
Comparing Synopsis Techniques for Approximate Spatial
Data Analysis

A. B. Siddique
Department of Computer
Science and Engineering
University of California,

Riverside
msidd005@ucr.edu

Ahmed Eldawy
Department of Computer
Science and Engineering
University of California,

Riverside
eldawy@ucr.edu

Vagelis Hristidis
Department of Computer
Science and Engineering
University of California,

Riverside
vagelis@cs.ucr.edu

ABSTRACT
The increasing amount of spatial data calls for new scal-
able query processing techniques. One of the techniques
that are getting attention is data synopsis, which summa-
rizes the data using samples or histograms and computes
an approximate answer based on the synopsis. This gen-
eral technique is used in selectivity estimation, clustering,
partitioning, load balancing, and visualization, among oth-
ers. This paper experimentally studies four spatial data syn-
opsis techniques for three common data analysis problems,
namely, selectivity estimation, k-means clustering, and spa-
tial partitioning. We run an extensive experimental evalua-
tion on both real and synthetic datasets of up to 2.7 billion
records to study the trade-offs between the synopsis meth-
ods and their applicability in big spatial data analysis. For
each of the three problems, we compare with baseline tech-
niques that operate on the whole dataset and evaluate the
synopsis generation time, the time for computing an approx-
imate answer on the synopsis, and the accuracy of the result.
We present our observations about when each synopsis tech-
nique performs best.

PVLDB Reference Format:
A. B. Siddique, Ahmed Eldawy and Vagelis Hristidis. Compar-
ing Synopsis Techniques for Approximate Spatial Data Analysis.
PVLDB, 12(11): 1583-1596, 2019.
DOI: https://doi.org/10.14778/3342263.3342635

1. INTRODUCTION
The amount of spatial data is exponentially increasing:

there are 2.5 exabytes of daily-produced data [37], of which
60− 80% is geo-referenced [16,20]. Space telescopes broad-
cast [33] 140 GB of data weekly, while 8, 000 tweets are sent
every second [34]. A wide range of applications is built on
top of these datasets, such as event detection [49], brain sim-
ulation [44,51], climate studies [23], trending keywords mea-
surement [35, 43] and so on. To support these applications,

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 12, No. 11
ISSN 2150-8097.
DOI: https://doi.org/10.14778/3342263.3342635

selectivity estimation [4, 5, 13, 14, 45, 48], clustering [9], spa-
tial partitioning [21, 22, 40, 54], load balancing [6, 41], query
optimization [7], and visualization [47], among others, are
common research problems for big spatial data.

In the era of big data, the appetite for algorithms which
can provide a fast response to queries on such datasets has
grown more than ever. Processing such gigantic datasets
takes significant time, even if in-memory big data process-
ing systems, e.g., Apache Spark [59, 60], are used to run
approximate algorithms. One research direction to scale al-
gorithms for big datasets is data synopsis-based methods,
e.g., using sampling, and run the algorithm on that sam-
ple. Many approximation synopsis-based techniques have
been proposed, such as Sequential sampling [29], MHist [48],
GENHIST [28], Min-Skew [4], STHoles [12], self-tuning his-
tograms (STH) [1], quantiles summaries [25], wavelet trans-
form [45,53], and so on.

Yet, to the best of our knowledge, there exists no experi-
mental evaluation which compares different spatial synopsis-
based techniques in a common environment, due to two chal-
lenges. First, each data synopsis has a different representa-
tion and creation parameters, e.g., sampling ratio or the
number of histogram cells, which makes it hard to compare
their performance. Second, while existing algorithms can be
used as-is with samples, other synopsis-based methods, such
as histograms, might require major modifications to the al-
gorithms to work. The primary contribution of this paper
is comparing several important representatives of synopsis-
based techniques on three common spatial data analysis prob-
lems, in a common environment. The synopsis techniques
that we consider are selected based on their popularity and
their coverage of other techniques, as summarized in Ta-
ble 1, and discussed in Section 2, while the three analysis
problems are selected for being fundamental operations that
are sometimes used as building blocks to solve more com-
plex problems. Clearly, this study could be expanded in the
future, given the huge amount of techniques available in the
literature.

Figure 1 overviews the experimental setup of the paper.
Specifically, we experimentally compare existing and new
synopsis-based methods to solve three fundamental analy-
sis problems: selectivity estimation, k-means clustering, and
spatial partitioning on big spatial data. First, we compute
four types of data synopses, namely, random and stratified
samples, uniform and non-uniform histograms. To make
the synopses comparable, we define a parameter B which
indicates the memory budget that we can use for the syn-

Big Dataset

in DFS

In-Memory

Data Synopses

Evaluation of

the result
Result

Result
Memory

Budget

Figure 1: Common environment for data Synopsis-
based algorithms evaluation.

opsis. Then, we execute an algorithm on each data synopsis
to provide an approximate answer to three popular and di-
verse problems: selectivity estimation, k-means clustering,
and spatial partitioning. To evaluate their accuracy, the
synopsis-based algorithms are compared to full dataset al-
gorithms that work on the entire dataset.

Previous work has proposed algorithms that operate on
sample-based synopses, except for selectivity estimation
where histograms have also been used. To achieve a more
comprehensive evaluation, a secondary contribution of this
paper is that we propose new algorithms that operate on
histograms to solve the problems of K-means clustering and
spatial partitioning.

We use well-accepted measures to compute the quality of
the approximate answers. In specific, for selectivity esti-
mation, we use the relative error as compared to the exact
answer, for k-means clustering, we use the sum of squared
distances, and for spatial partitioning, we use five well-
known quality attributes inspired by the R*-tree index [21].
As shown in Figure 1, these quality measures are used to
compare to the algorithms that operate on the full dataset.
Based on this comparison, we make observations on when
synopsis-based algorithms might be a good choice.

While no synopsis-based algorithm works best for all the
given problems, and datasets, we are able to provide guide-
lines for choosing the most appropriate synopsis technique
for each of the three problems, given the dataset properties
and user preferences. Specifically, we found that for the se-
lectivity estimation, non-uniform histogram-based method
proves to be very efficient for selectivity ratios ≥ 0.001
for datasets, when rectangles tend to be small or medium-
sized. For k-means clustering, we found that non-uniform
histograms do not work well since they distort distance cal-
culations. For spatial partitioning, we found that the under-
lying partitioning scheme drives the overall quality far more
than the memory budget does.

Specifically, our contributions in this work are as follows:

1. We experimentally evaluate two types of samples and
two types of histograms for three common spatial prob-
lems. We use both real and synthetic datasets of up to
2.7 billion records and 100 GB of data. We vary the
memory budget for synopses and study its effect on
both the execution time and the quality of the results.

2. As a secondary contribution, to fill the gaps when no
algorithms have been proposed for a synopsis-problem
combination, we introduce new algorithms to execute
K-means clustering, and spatial partitioning using his-
tograms.

3. We provide guidelines on when to use each synopsis
technique based on their strengths and weaknesses,
given the dataset properties and user preferences.

The remainder of the paper is organized as follows. Re-
lated work is discussed in Section 2. Section 3 provides an
overview of the experimental study. Sections 4, 5, and 6
cover the details of selectivity estimation, k-means cluster-
ing, and spatial partitioning, respectively. Section 7 gives
an extensive experimental evaluation and highlights the key
findings. Finally, Section 8 concludes the paper.

2. RELATED WORK
Data synopsis is a statistical technique that provides a

summarized description, called synopsis, of a big dataset,
e.g., a sample, a histogram, a wavelet decomposition, or a
sketch. In data management, synopses are used to speed up
query processing by providing approximate answers based
on the synopsis. Almost all the data processing systems
including big data frameworks [30, 60] utilize some kind of
synopsis for speed and accuracy trade-offs. Yet, to the best
of our knowledge, there exists no experimental evaluation
which compares different spatial synopsis-base methods in
a common environment. We organize the related synopses
into three categories, sampling, histogram, and other syn-
opsis methods.

Sampling-based methods: Sampling-based methods
are pervasive. BlinkDB [5] utilizes dynamic sampling to
provide approximate query answers to standard relational
queries. Smart sampling techniques [46, 52] are shown to
outperform random sampling. To approximate the result
size of a query, a random sampling-based procedure is pro-
posed in [29]. Moreover, sampling is also used to provide
big spatial data partitioning techniques in different systems,
such as SATO [54], SpatialHadoop [21, 22], ScalaGiST [40],
and Simba [57]. A weighted sample based clustering method
is presented in [58] where the probability distribution of
the dataset is computed to assign a weight to the sample.
An adaptive sample for selectivity estimation is presented
in [39]. A wide range of spatial sampling techniques, such
as design and model-based sampling, are reviewed in [55].

Histogram-based methods: AQWA [6] builds a his-
togram for query workload in different regions to generate
adaptive workload-aware partitioning. An image clustering
algorithm [24] utilizes non-uniform histograms of the data
distribution to improve image segmentation. Histogram-
based methods are shown to be superior for accurate spatial
selectivity estimation [2, 36, 48]. The self-tuning histograms
(STH) [1] are built using the feedback from the query exe-
cution engine. It does not depend on the data size, so the
building cost is very small. STHoles [12], also built with-
out looking at the data, proposed histogram cell nesting,
and outperformed STH. Min-Skew [4] is an approximation
of the dataset, utilizing the traditional multi-dimensional
histograms while minimizing the spatial skew within each
histogram cell. GENHIST [28] uses overlapping cells based
on the local density of the data to achieve a compact ap-
proximation of the distribution. [13, 32] propose a prefix
sum method for the histogram, which can be used to an-
swer range queries in constant time. Instead of storing the
frequency of data points lying in a cell, each cell contains
horizontal and vertical prefix sum up to each cell.

Other synopsis methods: [45, 53] presents a multi-
resolution wavelet decomposition to get a space-efficient
approximation of the data, and fast approximate answers
for selectivity estimation for On-Line Analytical Processing

Table 1: Existing research in utilizing synopsis techniques for the three problems.

Type of Synopsis Selectivity Estimation K-Means Clustering Spatial Partitioning
Random/

Stratified Sampling
BlinkDB [5]

Sample-weighted
clustering [58]

SATO [54], SpatialHadoop [22]
ScalaGiST [40], Simba [57]

Uniform/
Non-uniform Histogram

Prefix-sum [32] Image segmentation [24]
Trivial to apply

Section 6.2
Euler

and other Histograms
AQWA [6], STH [1]

STHoles [12], GENHIST [28]
Not trivial to apply Not trivial to apply

Wavelets
OLAP queries [45, 53]

Cardinality estimation [3]
Not trivial to apply Not trivial to apply

Sketches Range Queries [19] Not trivial to apply Not trivial to apply

Table 2: A summary of the problems, synopses, and algorithms considered in this experimental study.

Problems Full Dataset
Data Synopsis

RS SS UH NH
Selectivity Estimation (SE) SE-F (Section 4.3) SE-RS, SE-SS [11] SE-UH, SE-NH [32]
K-Means Clustering (KC) KC-F [9] KC-RS, KC-SS [8] KC-RS, KC-SS (Section 5.2*)

Spatial Partitioning (SP) SP-F [25] SP-RS, SP-SS [17,38]
SP-UH, SP-NH (Section 6.2*),

SP-UHP, SP-NHP (Section 6.3*)
Whereas, RS = Random Sample, SS = Stratified Sample, UH = Uniform Histogram, NH = Non-uniform Histogram.

* New algorithms adapted in this paper.

(OLAP) queries. Wavelets, along with equi-width, and equi-
height histograms are used for cardinality estimation in [3].
A wide range of query-specific sketching techniques are dis-
cussed in [18] for approximate query processing. In this
paper, we only consider general synopsis methods that can
be applied to all three of our studied problems, and hence
we do not consider wavelets or sketches.

Table 1 summarizes the related work by presenting how
the existing synopses have been utilized to solve the three
problems that this paper studies. In our experimental study,
we pick widely used synopsis techniques that have been used
for all three popular research problems studied in this pa-
per (we include uniform/non-uniform histograms too, as it
is trivial to support spatial partitioning as shown in Sec-
tion 6.2). Euler and other histograms, as well as wavelets,
have not been used for spatial partitioning or K-means clus-
tering, and it is not trivial to adapt them for these problems,
so we do not consider them. Similarly, sketches are query-
specific, and thus it is not trivial to use them to solve the
other problems.

We use two sampling-based methods, namely, random
sampling and stratified sampling, and two histogram-based
methods, namely, uniform histogram, and non-uniform his-
togram, and provide a comprehensive evaluation to under-
stand the trade-offs in the different synopsis-based tech-
niques for big spatial data. We study their usage in three
popular research problems on big spatial datasets, namely,
selectivity estimation, k-means clustering, and spatial parti-
tioning. The experiments evaluate the effect of the synopsis
techniques on the three problems from three perspectives,
the synopsis generation time, the time for computing an
approximate answer on the synopsis, and the quality (or
accuracy) of the result. Our previous work [13] considered
a subset of the synopsis techniques used in this paper and
only the selectivity estimation problem on point datasets. A
one-page abstract of this study is provided in [50] but it does
not provide any details of the techniques or the experimental
results.

3. OVERVIEW
This section provides an overview of the common environ-

ment, which is used to systematically evaluate the perfor-
mance of the spatial data synopsis for three well-researched
problems, i.e., Selectivity estimation, K-Means clustering,
and Spatial partitioning. Table 2 summarizes the synopses
and problems, which are considered in this experimental
evaluation. For a systematic and fair evaluation of the
synopsis-based algorithms, we generate a data-synopsis by
fixing the allowed memory budget for every synopsis tech-
nique. Once, the synopsis is generated, synopsis-based al-
gorithms do not have access to the original big dataset, and
are only allowed to use the synopsis to produce the result.
The quality of the results of the synopsis-based algorithms is
measured using the original big dataset utilizing well-known
criteria for each problem, as explained in Section 7. Specif-
ically, we experimentally evaluate four data synopsis tech-
niques and three frequently researched problems on big data
to comparatively understand the effect of the synopsis.

The performance of the synopsis-based algorithms is not
only compared with one another but also compared against
algorithms which utilize the original big dataset instead of
a synopsis. The goal is to show any possible performance
gain or accuracy loss in synopsis-based algorithms.

3.1 Data Synopsis Calculation
The first step to use synopsis-based processing is to calcu-

late the synopsis which can be shared among different prob-
lems and algorithms. Figure 2 shows a big spatial dataset
and the four data synopses that correspond to it. The input
to this step is a big dataset, a data synopsis method, and
a parameter B which represents the desired synopsis size
(in bytes), also called the memory budget. The output of
this step is a synopsis of the dataset that fits within the size
B. The parameter B provides control over the synopsis size
irrespective of the input dataset, synopsis technique, and
the synopsis-based algorithm. For example, the four data
synopses, shown in Figure 2, use a budget of 256 bytes.

(a) Input dataset (b) RS (c) SS

0 0 2 65 41 46 17 0

11 16 44 192 268 374 130 0

58 46 74 184 287 355 301 49

63 64 51 121 130 65 12 39

(d) UH

1
2

1
 1

7
9

 1
3

7

4
9

 1
5

7
 1

5
2

3
4

 1
4

0
 1

6
4

5
5

 1
7

4
 2

3
7

4
9

 1
5

9
 1

9
4

7
7

 1
1

5
 2

4
8

1
8

6
 1

7
8

 3
0

0

(e) NH

Figure 2: An input spatial dataset and its four synopses each of size, B = 256 bytes.

Fixing the synopsis size enables us to compare the quality
and performance of the various synopses irrespective of their
creation parameters. It can be set based on the capability
of the machine that will run the synopsis-based algorithm,
e.g., its available memory size. We have implemented two
variants of sampling, i.e., random sampling and stratified
sampling, and two variants of the spatial histograms, i.e.,
uniform and non-uniform histogram.

Random Sample (RS): To get a random sample of size
B (Figure 2b), we draw a random sample of an expected
fraction σ ∈ [0, 1] in parallel; if the number of records in
the input is |I|, and p0 bytes are required to store a sample

point, then the sampling fraction is σ = B/p0
|I| .

Stratified Sample (SS): To get a stratified sample of
size B (Figure 2c), we define the strata as the grid cells of
a uniform histogram. That is, if fi represents the frequency
of the cell i, and we want to pick σ fraction of the dataset,
then would randomly pick σ × fi elements from that cell.

Uniform Histogram (UH): The uniform histogram
(Figure 2d) is represented by a 2d array. For a budget of
the size B and a cell entry of size p bytes, the total num-
ber of cells is, d1 = bB/pc. Assuming square-shaped cells,
each cell has an area of Area(I)/d1 and a side length of

c1 =
√
Area(I)/d1 where Area(I) is the are of the MBR

of the input data. This results in a uniform grid size of
L1 = bWidth(I)/c1c columns and W1 = bHeight(I)/c1c
rows. The frequency of each cell is computed based on the
centroids of the records in parallel.

Non-uniform Histogram (NH): In non-uniform his-
togram (Figure 2e), in addition to storing the counter, we
also store the width of each column and the height of each
row. Assuming that the width and height values take the
same space as one entry in the histogram, e.g., eight bytes,
then the number of rows and columns for non-uniform his-
togram is W2 = W1 − 1 and L2 = L1 − 1. To compute
non-uniform histogram, we first draw a sample of size B and
compute MBR of the input dataset. Then, the width/height
of each column/row is computed by splitting the space into
vertical/horizontal strips where each cell contains roughly
the same number of the sample points. Finally, the whole
input is scanned in parallel and the frequency of each cell is
computed based on the centroid of every geometry; binary
search is used to find the column and row for every record.

3.2 Synopsis-based Algorithms
The synopsis-based algorithms operate on the small,

fixed-size synopsis, and produce the result by employing the
problem-specific logic. For example, this step produces k-
cluster centers for k-means clustering, partition boundaries
for spatial partitioning, and estimates for the given query
ranges based the data-synopsis. Sections 4, 5, and 6 give
more details about the algorithms based on the specific syn-
opsis methods. The quality of the results is measured based

on the original big dataset. To do this, the result com-
puted by the synopsis-based algorithms is first broadcasted
to all the machines in the cluster while the input dataset
is scanned in parallel to measure the quality of the results.
For example, in K-means clustering, the synopsis-based al-
gorithm produces the k-cluster centers, which are used to
measure the quality of the clustering for the whole dataset.
The partition boundaries, generated by the synopsis-based
algorithms, are used to calculate the quality of the partitions
for the whole dataset. Similarly, selectivity estimates for the
given query ranges are measured against ground truth for
quality evaluation. It is noteworthy that the data synop-
sis generated for a fixed budget can be reused for all future
synopsis-based algorithms.

3.3 Handling Dynamic Data
Dynamic (streaming) spatial data is an important type of

data to be handled. Although in this experimental evalua-
tion, all the synopses are computed on the static datasets,
we can leverage previous work on incrementally computing
synopses on streaming data. For example, sampling over
spatial streams proposed in [15,31] can be used to calculate
a random sample of size B. Similarly, histograms can be
computed based on the algorithms proposed in [26, 27, 56].
Moreover, combining the UH synopsis calculation with the
random sampling, SS synopsis can also be generated. Then,
SE-UH and SE-NH can answer the selectivity queries by re-
computing the prefix-sum on the updated histogram. SE-
RS and SE-SS can work with minor implementation-related
change in k-d tree construction, where sampled data is used
to divide the space as it comes, instead of dividing the space
on the median value. New partitions can be generated or
new cluster centers can be found based on the updated syn-
opsis, by applying the respective synopsis-problem combina-
tion. We note that adaptive partitioning or adaptive clus-
tering based on the updated synopsis is beyond the scope of
this study.

4. SELECTIVITY ESTIMATION (SE)
Selectivity estimation is a well-studied research problem

which estimates the number of records in a given query
range. This problem has many applications such as ap-
proximate query processing and query optimization where
the query selectivity helps the query optimizer in deciding
which access path to use, i.e., whether or not to use an
index. In this study, we provide an estimated number of
records in the given query range based on the synopsis. The
input to the algorithm is the data synopsis of size B bytes
and a rectangular query range Q while the output is a single
number that represents the estimated number of records in
Q. We use two variants of sampling and the three variants
of histogram-based synopsis in this problem.

l1

p1

p2

p3

p4

p5
p6

p7

p8

p9

p10

p11p12

p13 p14 p15 p16

l2

l3
l14

l4

l5

l6

l7

l8

l9

l10

l11

l13

l12

l15

Q

(a) K-d tree index of sample points

l15

p
1
6

p
1
5

p
1
4

p
1
3

p
1
1

p
1
0

p
1
2

p
9

p
7

p
8

p
6

p
5

p
4

p
3

p
1

p
2

l14l13l12l11l10l9l8

l4 l5 l6 l7

l2 l3

l1

(b) k-d tree

Figure 3: Sample-based selectivity estimation using
K-d tree.

4.1 SE-RS, SE-SS: Estimation on Samples
For sample-based data synopses (either computed through

the random sample or stratified sample), we insert the sam-
ple points into an in-memory K-d tree [11] to speed up
the approximate results for the query range. For n sam-
ple points, the K-d tree can be built in O(n logn) time. We
only need to construct the K-d tree index once per data
synopsis for a fixed memory for all the future selectivity
queries. The K-d tree index can efficiently return the num-
ber of point in the given query range. To get results for the
original dataset, we divide the K-d tree index result by the
ratio of the sample. For example, if the sampling ratio in the
synopsis step is chosen to be 0.02, then the resulting value
from the K-d tree index will be divided by 0.02 to get the
approximate results from the original dataset for the given
query range. To build the K-d tree, we recursively divide
the space over the median value of alternate axes, starting
with the x coordinate. For example, Figure 3a shows how
to partition the RS synopsis (Figure 2b), where p1, p2, .., p16
represent points and l1, l2, .., l15 partitions in Figure 3a. The
resulting tree is illustrated in Figure 3b for the same syn-
opsis. Depending on the range query, we need to traverse a
small or a big portion of the K-d tree to get the selectivity
estimation. For the query Q in Figure 3, we only need to
select a small portion of the tree. But, for very big range
queries, a big portion of the tree would need to be selected.
This means that the size of the query affects the running
time as further shown in the experiments in Section 7.

4.2 SE-UH, SE-NH: Estimation on Uniform/
Non-uniform Histograms

For both uniform and non-uniform histograms, the selec-
tivity estimation query locates all the grid cells that overlap
the query rectangle Q and sums all their frequencies. The
prefix-sum technique [32] is used to compute that sum in
a constant time. The prefix-sum step runs only once per
histogram-based synopsis in linear time where it computes
the horizontal and then vertical prefix sum over the his-
togram. As a result, the frequency of each cell will be the
total number of points in that cell plus that are to its left
or top, which is used to answer all the future selectivity
queries. To provide the answer for any given range query,
the top-left, and bottom-right corner cells are identified. For
the uniform histogram, these cells can be identified in con-
stant time. Whereas, in the case of the non-uniform his-
togram, these two cells are identified using binary search in
the columns and rows. Assuming the index for the top-left
and bottom-right cells to be i1, j1 and i2, j2 respectively, the
final answer is computed by adding the frequencies of i1−1,
j1 − 1 and i2, j2 and subtracting the i2, j1 − 1 and i1 − 1,
j2 indices. For example, Figure 4a presents the prefix-sum

(a) Query answer with Prefix-sum (b) Unaligned Query

Figure 4: Selectivity query answer using histogram.

of the synopsis UH (Figure 2d), a range query (gray), and
how to calculate the answer for the range queries in constant
time (e.g., +178− 427 + 2403− 494 = 1660).

The above technique is accurate only if the query is per-
fectly aligned with the grid boundaries; otherwise, there
might be over- or under-counting depending on how partial
cells are handled. To improve the accuracy of the result,
the frequency of a partially overlapping cell is scaled down
according to the ratio of its area that overlaps the query rect-
angle Q. For example, if only one-quarter of the cell overlaps
Q, its frequency is multiplied by 0.25. This is done under the
assumption that the data in each grid cell is uniformly dis-
tributed. The selectivity estimation computation can still be
done easily in constant time by grouping partially overlap-
ping cells into eight groups depending on their position (left,
right, top, bottom, top-left, top-right, bottom-left, bottom-
right). For example, Figure 4b presents how the range query
can be split into parts. After getting the answer for every
portion of the query, the answer is multiplied by the respec-
tive fraction it covers the cell of the histogram. Finally, all
the values are summed. This calculation is still in constant
time irrespective of the size of the range query or whether
it is aligned or not with the histogram cell boundaries.

4.3 SE-F: Estimation on Full dataset
The baseline algorithm operates on the original input

dataset. It scans the dataset in parallel and filters the
records based on the intersection with the given range query.
It counts the numbers of filtered records. This algorithm al-
ways gives an exact result, but it takes significantly more
time than the synopsis-based algorithms, as it has to scan
the whole dataset for every query.

5. K-MEANS CLUSTERING (KC):
K-mean clustering is considered one of the most impor-

tant unsupervised learning problem, which tries to group
objects having some kind of similarity into one cluster. We
employ variants of K-means++ [8] to cluster the data into
K clusters. The input to the synopsis-based k-means clus-
tering algorithms is a synopsis of size B bytes and the num-
ber of clusters K. The synopsis-based algorithms run in an
iterative mode until convergence or until the number of it-
erations reaches a pre-specified upper bound, and return k
cluster centers. To compute the quality of the clusters, we
use the cluster centers to allocate every record in the whole
dataset to the closest center in parallel. In Section 7, we
show extensive experiments, which show the superiority of
the some of the synopsis-based algorithms, which can out-
perform scalable K-Means++ [9], as implemented in Apache
Spark’s MLlib in some situations.

(a) Top candidates for second
cluster center (unfilled circles).

(b) Top candidates for third
cluster center (unfilled circles).

Figure 5: Initial cluster centers calculation for the
sample.

5.1 KC-RS, KC-SS: Clustering on Samples
The same synopsis-based algorithm operates on the sam-

ple generated through a random sample or stratified sample.
The input to this algorithm is the number of clusters K, and
a sample of n points (n data points correspond to the mem-
ory budget B bytes), such that n ≥ K. The first initial
cluster center is picked uniformly at random, and the re-
maining K−1 initial cluster centers are picked according to
the probability distribution d(x,C)2. Where d(x,C) is the
Euclidean distance of the record x from the closest cluster
center C. Basically, it tries to spread out the initial cluster
centers.

For example, Figure 5a shows how the first initial cluster
center is picked uniformly random (filled circle in Figure 5a).
Squared Euclidean distance of all the remaining points is
calculated from it. Thus, the farthest point will have the
highest chance to be picked as the second initial cluster cen-
ter (distance for top three candidates is shown). Since, the
algorithm is probabilistic, for a concrete example, we pick
one point as the second initial cluster center (filled circle in
Figure 5b). Figure 5b shows top candidate points (unfilled
circles) with the higher chances to be picked up as the third
initial cluster center based on their squared distances from
the closest centers. Once, initial cluster centers are selected,
then Lloyd algorithm (which recursively assigns points to
the closest center, and recalculates the center) is run to ob-
tain final K cluster centers, which are used to cluster the
whole dataset into K clusters in parallel. The output of this
algorithm is the final locations of the K centers.

5.2 KC-UH, KC-NH: Clustering on Uniform/
Non-uniform Histograms

The input to this variant of K-Means++ is a 2d array of
size r × c, and the number of clusters K. The basic idea is
to represent each cell that has a frequency f , by f points
all located at the center of the cell. This is equivalent to
creating r × c points, each located at the center of a cell
and is assigned a weight f equal to the frequency of that
cell. The first initial cluster center is picked at random,
such that the cell with higher weight has a higher chance
of being picked as the cluster center. The remaining K − 1
cluster centers are picked according to the probability distri-
bution f×d(x,C)2. Where d(x,C) is the Euclidean distance
of the record x from the closest cluster center C, and f is
the weight for data point x, generated at the cell center.
This results in the same behavior as replacing the cell with
f points all located at its center. In this way, data points
with the higher frequencies, and far away from the existing
cluster centers would have a higher chance to be picked as
the next cluster center. Figure 6 presents how histogram-
based synopsis is used to generate points at the center of

(a) Top candidates for first
cluster center (unfilled circles).

(b) Top candidates for second
cluster center (unfilled circles).

Figure 6: Initial cluster centers calculation for his-
togram.

the histogram cells with the weight f . Figure 6a shows the
top five candidates with higher weights f (unfilled circles)
for the first initial cluster center. Again, to be concrete,
we pick one of these as the first cluster center (filled circle
in Figure 6b), and calculate the squared distances for the
rest of points and multiply with the corresponding weight f
for the second cluster center. Once the initial K centers are
picked, weighted K-Means is used to obtain the final K clus-
ter center. At each iteration, the centers of the K clusters
are updated to the weighted centroid of all the cells assigned
to this cluster. Almost same algorithm is used for cluster-
ing the uniform and non-uniform histogram based synopses.
The only difference is that in case of uniform histogram,
the centroids of the histograms are calculated in constant
time based on their location, and if the frequency is zero
for that cell, we simply exclude that cell. Whereas in non-
uniform histogram we pick the stored values, and almost
no cell would have zero frequency, as the non-uniform his-
togram strives to distribute equal number of the records in
each histogram cell.

To measure the quality of the clusters, we scan the whole
dataset in parallel and find the nearest cluster center for each
data point, and accumulate the squared error, which is the
distance of the record’s centroid from the cluster center. The
total squared distance is used as a quality measure of the
k-means clustering as further detailed in the experiments.
In the same scan of the data, records can be assigned to the
appropriate cluster.

5.3 KC-F: Clustering on Full dataset
A scalable version of K-means++ [9] is implemented in

Apache Spark’s MLlib, which utilizes full dataset. It speeds
up the initial cluster center selection by parallelizing it. It
oversamples by sampling each data point independently and
then picking k initial cluster samples from these sampled
data points. Finally, it iterates over the entire data multiple
times to move the cluster centers according to the original
Lloyd’s algorithm [42].

6. SPATIAL PARTITIONING (SP)
Spatial partitioning is a widely researched problem for big

spatial data which takes a large dataset and partitions it into
smaller-sized subsets while balancing the sizes of these par-
titions and maintaining their spatial locality. The synopsis-
based spatial partitioning algorithms take as input a synop-
sis of size B, and the desired number of partitions s while
the output is a set of at least s MBRs that define the bound-
aries of each partition. s can also be set based on the size
of the input dataset and block size of Distributed File Sys-
tem (DFS). Notice that s is used only as a hint while the
partitioning algorithm might generate more partitions. This

(a) Vertical strips (b) Horizontal strips

Figure 7: STR Spatial partitioning for the sample.

(a) Vertical strips (b) Horizontal strips

Figure 8: STR Spatial partitioning for the his-
togram.

flexibility simplifies the implementation and allows for more
optimizations as shown below. In order to measure the qual-
ity of the partitions, and actually generate the partitions for
the whole dataset, it scans the original input dataset in par-
allel and assigns each record to one of the partitions based
on their MBRs.

6.1 SP-RS, SP-SS: Partitioning on Samples
The same synopsis-based algorithm operates on the ran-

dom and stratified samples. We use STR algorithm [38] and
R*-tree [10] as partitioning techniques. The STR algorithm
uses a sample of size n points (n data points corresponds
to the memory budget B bytes), already computed by the
synopsis step, to partition the space into s cells of roughly
the same size. First, we compute the degree of the STR tree
g = d

√
se and run two iterations of the STR algorithm. In

the first iteration, the points are sorted by x and split into
g vertical strips each containing roughly the same number
of points. In the second iteration, each vertical strip is in-
dependently sorted by y is split into g partitions of roughly
the same size. For example, Figure 7a shows verticals strips
to partition the data, and similarly, Figure 7b presents hor-
izontal strips within each vertical strips in such a way that
every partition has roughly equal number of records. For
R*-tree, we use an open source implementation [17] to build
an R*-tree with at least s leaf nodes by setting the maximum
leaf node capacity to M = n/s.

6.2 SP-UH, SP-NH: Partitioning Uniform/
Non-uniform Histograms

It uses the frequency of the cells to determine the par-
tition boundaries. Each partition contains approximately
|I|/s elements, where |I| is the sum of frequencies of all the
cells, which is also equal to the total number of records in
the input dataset. Similar to the sampling-based algorithm,
this algorithm runs in two iterations defining the vertical
and horizontal strips, respectively. In the first round, the
MBR of the whole input is divided into s vertical strips
such that each strip contains roughly Pv = |I|/s elements.
This is done by scanning the histogram from left to right
while accumulating the total value of each column one-by-
one. Once the accumulated value goes beyond Pv, a ver-
tical split line is created at this point and we subtract Pv

(a) Vertical strips (b) Horizontal strips

Figure 9: Spatial partitioning for the histogram par-
tial cells.

from the accumulator. This process is repeated until all the
columns in the histogram are processed. The second iter-
ation repeats the same process for each vertical strip that
was created in the first round. That is, the rows inside each
vertical strip are scanned from top to bottom to split them
into partitions each containing Ph = Pv/s points. This algo-
rithm works for both uniform and non-uniform histograms.
For example, Figure 8 shows how histogram-based synopses
(Figure 2d) can be used to generate partition MBRs. Note
that the partition boundary has to be aligned with the cell
boundaries.

6.3 SP-UHP, SP-NHP: Partitioning on Uni-
form/ Non-uniform Histograms Partial
cells

Ideally, each partition should contain approximately |I|/s
elements, but in case of highly skewed data, the above algo-
rithm might lead to load imbalance since it has to abide by
the column and row boundaries created by the histogram.
To overcome this scenario, we can make a slight modification
to the algorithm described above. In the first round, instead
of placing the vertical split lines at column boundaries, we
split the column that causes the overflow (assuming uniform
data distribution in that column) such that the created ver-
tical strip contains an expected size of Pv. The same pro-
cess is done when splitting vertical strips using horizontal
lines. Both uniform and non-uniform histograms are split
as needed. As shown in Figure 9, we do not need to abide
by the histogram cell boundaries, thus more balanced parti-
tion MBRs based on the histogram-based synopses (shown
in Figure 2d) can be generated.

6.4 SP-F: Partitioning on Full dataset
In Apache Spark, a readily available implementation,

called ApporxQuantile, is used to compute approximate
quantiles. The implementation of the ApproxQuantile is
essentially an optimized variation of the Greenwald-Khanna
algorithm [25]. If a dataset hasN elements, and a quantile at
probability q, and up to error rate e is queried, it will return
a value r, i.e., b((p− e)×N)c ≤ rank(r) ≤ d((p+ e)×N)e.
Using this method, we first generate s vertical strips by
querying quantiles with respect to x element of the dataset,
and then within each vertical strip, we generate the hori-
zontal strips by querying the quantiles with respect to the
y elements of the data points within that strip. These hor-
izontal and vertical strips serve as the boundaries of the
partitions.

7. EXPERIMENTAL EVALUATION
This section provides an extensive experimental evalua-

tion on the proposed problems using various data synopsis
methods.

Exact
Answer

Approximate
Answer

Dominant
Objective

Not too small
Too small

Query Size

SE-F SE-NHSE-SS

(a) Selectivity Estimation

Very large

not too
 large

Number of
Clusters

Clustering time

Clusters Quality

Dominant
Objective

KC-F KC-RS KC-UH

(b) K-Means Clustering

Balance of
all Qs

 Partitioning
time

Optimize
Q1 and Q5

Dominant
Objective

SP-RS(R*)

SP-UHPSP-NHP

(c) Spatial Partitioning

Figure 10: Guidelines on when to use which synopsis technique.

Table 3: Dasets

Name Size Records Description

all-nodes 96 GB 2.7 billion Points
edges 23 GB 70 million Polygons
all-objects 92 GB 263 million Mixed
synthetic 51 GB 250 million Rectangles

7.1 Summary of Results and Guidelines
In our experimental evaluation, no technique performs

best for every problem. For that, we provide selection guide-
lines in Figure 10. The key finding are summarized below.

Selectivity Estimation: SE-F can provide an exact an-
swer, but it also takes significantly more time than any other
method to answer the selectivity query. SE-NH can provide
better approximate results when the query range is not too
small, e.g., ≥ 1mile, in slightly more than constant time.
Whereas, for very small query ranges, SE-SS can be chosen.
It also takes more time to generate SS synopsis, which should
be a non-critical issue given that the synopsis only needs to
be generated once for all the future selectivity queries.

K-Means Clustering: KC-UH can provide better clus-
tering cost than all others including MLlib’s scalable K-
Means++ implementation. However, if clustering time is
the dominant objective, then KC-RS can provide compara-
ble (to KC-F) quality clusters. Finally, if k is very big, e.g.,
≥ 10, 000, then KC-F is the most favorable solution.

Spatial Partitioning: SP-NHP can optimize for Q1 and
Q5, whereas SP-RS(R*) can provide a good balance for all
the quality measures. However, if the dominant objective is
partitioning time, then SP-UHP should be considered.

7.2 Experimental Setup
This section describes the setup of our experiments in-

cluding machine specifications, datasets, parameters, and
performance metrics. We use both real [22] and synthetic
datasets as listed in Table 3. The MBR of the synthetic

dataset is x1 = −180, y1 = −90, x2 = 180, y2 = 90. In this
MBR, uniformly random points (x and y as double) are gen-
erated to be used as the center of the rectangles of width and
height of ≈ 2, the rectangles close to the MBR boundaries
can have width or height < 2 to keep the centers uniformly
distributed and within the MBR.

While any big data system can be used to implement all
these algorithms, we are using Apache Spark to exploit its
in-memory features, and available implementations, where

Table 4: Performance Metrics for each problem

Problem Quality Measure(s) Performance Measure(s)

SE
absolute relative
accuracy

Query response time

KC
Sum of Squared
Error

Clustering time

SP Q1,Q2,Q3,Q4,Q5 Partitioning time

Table 5: Parameters for Evaluation

Parameter for Parameters Range

Synopsis Memory budget 10KB to 216MB
SE Selectivity Ratio 10−4 to 10−1

KC Number of clusters 10 to 1, 000
SP Number of partitions algorithm-dependent

possible, to make the experiments more transparent and
trustworthy. Experiments on full datasets and synopsis gen-
eration are run using Apache Spark 2.1.0 on a 12-node clus-
ter, each with 12 cores, 64 GB RAM, and 10 TB disk storage.
They run on CentOS 7.4 and Oracle Java 1.8.0 131. All the
synopsis-based algorithms are executed on a machine with
16 cores, 128 GB RAM, and 10 TB HDD.

We generate synopses of the big datasets using a wide
range of memory budgets, run selectivity estimation, k-
means clustering, and spatial partitioning algorithms for dif-
ferent selectivity ratios, number of clusters, and partitions
respectively. To evaluate the effectiveness of each technique,
we use quality (listed in Table 4,5) and performance mea-
sures, described in the next subsections.

7.3 Synopses Performance
This section provides the performance of the synopsis for

the four synopsis methods. Since the synopsis generation
step is independent of the synopsis-based algorithms, the ex-
periments in this section are not specific to any problem. In
Figure 11, we vary the budget B from 10KB to 216MB, and
measure the total running time of the synopsis generation
step for each of the four synopsis methods, namely, random
sampling(RS), stratified sampling (SS), uniform histogram
(UH), and non-uniform histogram (NH). These experiments
are executed on the four datasets listed in Table 3. Our
experiments show that RS consistently runs faster, whereas
SS has the longest running time for edges, all-objects,

10−2 10−1 100 101 102

50

100

log Memory Budget (MB)

R
u
n
n
in
g
ti
m
e
(s
)

(a) edges dataset

101 102

100

200

log Memory Budget (MB)

R
u
n
n
in
g
ti
m
e
(s
)

(b) all-nodes dataset

10−1 100 101 102

100

200

log Memory Budget (MB)

R
u
n
n
in
g
ti
m
e
(s
)

(c) all-objects dataset

10−1 100 101 102

50

100

150

log Memory Budget (MB)

R
u
n
n
in
g
ti
m
e
(s
)

RS SS

UH NH

(d) synthetic dataset

Figure 11: Running time of different synopsis techniques for different datasets.

0 20 40 60

0

0.5

1

Memory Budget (MB)

A
cc
u
ra
cy

(a) Selectivity Ratio = 0.0001

0 20 40 60

0

0.5

1

Memory Budget (MB)

A
cc
u
ra
cy

(b) Selectivity Ratio = 0.001

0 20 40 60

0.4

0.6

0.8

1

Memory Budget (MB)
A
cc
u
ra
cy

(c) Selectivity Ratio = 0.01

0 20 40 60

0.92

0.94

0.96

0.98

1

Memory Budget (MB)

A
cc
u
ra
cy

SE-RS

SE-SS

SE-UH

SE-NH

SE-F

(d) Selectivity Ratio = 0.1

Figure 12: edges: Accuracy of all techniques for different selectivity ratios and memory budgets.

and synthetic datasets, as shown in Figures 11a, 11c,
and 11d. As SS first computes uniform histograms, then
according to the frequency of each cell, the stratified sam-
ple is obtained, so it was expected to have more running
time. A slightly interesting result is shown in Figure 11b for
all-nodes dataset, the crossover between SS and NH for
B > 80MB. The explanation for this crossover is very intu-
itive; as NH uses binary search to identify the cell for each
record, whereas cell identification in UH computation for SS
is performed in the constant time. Although all-objects

and all-nodes are roughly similar size datasets, yet the
number of records in each vary by a big margin.

The synopsis step is performed only once for a given syn-
opsis method and a memory budget, and all the synopsis-
based algorithms can reuse once the synopsis is generated.
To conclude this subsection, the running time of all the tech-
niques grow as we increase the budget, B, and the number
of the records in the input dataset. Whereas, the running
time of the NH is affected the most by the number of records
in the input dataset.

7.4 Selectivity Estimation Performance
This section deals with the quality and performance mea-

surement of the selectivity estimation algorithm. To restate,
the selectivity estimation queries are answered purely based
on the data synopsis, and no scan of the big dataset is re-
quired. We use edges and synthetic dataset for evaluation
of the different synopsis-based selectivity estimation algo-
rithms. To prepare a query workload, we pick 100 random
points from the input dataset and use as query centers. The
queries are rectangles with an area of 0.0001, 0.001, 0.01,
and 0.1 of the area of the MBR of the input dataset.

7.4.1 SE: Quality Measure
To evaluate the quality of the selectivity estimation al-

gorithms, we use average absolute-relative-accuracy as the
quality measure, which is on-the-average how close is the
estimate to the ground truth for all the queries. To be able
to measure the quality, we use SE-F, which always com-
putes exact answer (we consider it as ground truth) for the
given query. For a query q, if the ground truth is tq and
the estimated value is eq, we compute the accuracy of q as
max{0, 1− |tq − eq|/tq}. This gives a range of [0, 1] for the
accuracy. The average accuracy of all the 100 queries for
each selectivity ratio is used as the accuracy for the corre-
sponding technique.

Figures 12 presents the accuracy of all the selectivity es-
timation algorithms for edges dataset for different selectiv-
ity ratios ranging from 0.0001 to 0.1, and memory budgets
varying from 1MB to 60MB. In general, the accuracy tends
to increase when we increase the budget which is desirable
behavior. Particularly, the smaller selectivity ratios, such
as 0.001, are more interesting to observe for two reasons,
1) smaller selectivity ratios contain only a small number of
records, thus the margin of error is very little, 2) it is closer
to most of the real-world scenarios, as generally, users are
more interested in smaller region queries, as compared to
the large ones (e.g., find restaurants within 5 − 10 mile as
compared to 100 miles.).

For edges dataset, SE-NH is more accurate than all
other techniques except for very small range queries (e.g.,
≤ 1mile), where SE-SS and SE-RS have better accuracy.
Whereas, SE-UH has the worst accuracy due to sparseness
in some areas and denseness at others in the real-world
dataset. The main reason for being SE-NH worse than SE-
SS and SE-RS for very small selectivity ratios is that since,

10−4 10−3 10−2 10−1

50

100

150

Selectivity Ratio

R
u
n
n
in
g
ti
m
e
(m

s)
Memory Budget = 0.2% = 8MB

10−4 10−3 10−2 10−1
0

100

200

300

Selectivity Ratio

R
u
n
n
in
g
ti
m
e
(m

s)

Memory Budget = 0.5% = 20MB

10−4 10−3 10−2 10−1

0

200

400

600

Selectivity Ratio

R
u
n
n
in
g
ti
m
e
(m

s)

Memory Budget = 1% = 40MB

10−4 10−3 10−2 10−1

0

500

1,000

Selectivity Ratio

R
u
n
n
in
g
ti
m
e
(m

s)

Memory Budget = 2% = 80MB

SE-RS

SE-SS

SE-UH

SE-NH

Figure 13: synthetic: Query running time for different selectivity ratios and memory budgets. SE-F = 55061ms

0 500 1,000

1

1.5

2

2.5

Number of Clusters

N
or
m
al
iz
ed

C
os
t
(S
S
E
)

KC-RS

KC-SS

KC-UH

KC-NH

KC-F

(a) B = 2.16MB

0 500 1,000

0.95

1

1.05

Number of Clusters

N
or
m
al
iz
ed

C
os
t
(S
S
E
)

(b) B = 21.6MB

Figure 14: all-nodes: Cost for clustering techniques.

for very small selectivity ratios such as 0.0001, the query
size is too small that it mostly covers partial cells of the
NH. Moreover, it is also observed that for larger selectivity
ratios (e.g., 0.1), all the techniques have accuracy > 97%,
because the big query rectangle covers a large number of
records, so any technique can easily estimate within 3% er-
ror for B > 10MB.

7.4.2 SE: Performance Measure
To measure the performance of every technique, we use

the average time to answer the estimation query. Figure 13
shows the average time to answer a single selectivity estima-
tion query for the synthetic dataset as we vary the budget
and the query size. All histogram-based techniques are clear
winners as they can answer any query in constant time, as-
cribed to the usage of the prefix-sum technique. Whereas
sampling-based selectivity estimation techniques use a k-d
tree index to answer the queries. As the sample size ex-
pands, the search time will also increase. Similarly, bigger
selectivity ratios such as 0.1, influence the running time of
the sampling-based method many-fold, as it has to estimate
for a very big portion of the tree. Although SE-F always
gives the exact answer, yet it takes more than 55 seconds to
answer a single selectivity query for synthetic dataset, as
it has to scan the whole dataset for every query.

To conclude the selectivity estimation results, SE-SS is
better for very small selectivity ratios such as, ≤ 0.0001, and
SE-NH outperforms all others for selectivity ratios ≥ 0.001
(except SE-F, which is many-fold slower than synopsis-based
algorithms) in terms of accuracy for a wide range of exper-
iments, and all histogram-based techniques can answer the
selectivity estimation queries in O(1), and thus surpass the

0 500 1,000

0

100

200

Number of Clusters
R
u
n
n
in
g
ti
m
e
(m

)

KC-RS KC-SS

KC-UH KC-NH

KC-F

(a) B = 2.16MB

0 500 1,000

0

200

400

Number of Clusters

R
u
n
n
in
g
ti
m
e
(m

)

(b) B = 21.6MB

Figure 15: all-nodes: Clustering running time.

sampling-based technique. SE-F can only be chosen, when
the exact answer is required for very small query ranges,
and time to answer is not a consideration.Moreover, precise
guidelines on, when to use which technique, are presented in
Figure 10a.

7.5 K-Means Clustering Performance
This section provides the experimental results of both the

quality and performance of the k-means clustering problem.
For both metrics, we compare to the scalable K-Means++
available in Apache Spark MLlib.

7.5.1 KC: Quality Measure
We use the cost of the clustering as a quality measure

which is the Sum of Squared Error (SSE), i.e., the sum of
the squared distance of each point to its cluster center. Since
the k-means algorithm is randomized, we run each experi-
ment 11 times and report the median of all the costs. In
Figure 14, the number of clusters (K) is increased from 10
to 1, 000 for two budget values of 2.16 and 21.6 MB. The
cost is normalized by dividing them over the cost of KC-F
(MLlib).

For a very small memory budget of 2.16MB (Figure 14a),
KC-UH, KC-RS, and KC-SS have comparable quality re-
sults to KC-F. For the larger memory budget of 21.6MB
(Figure 14b), the KC-UH has the minimum cost, which is
even slightly better than KC-F. On the other hand, KC-
NH provides a very poor performance for both small and
large budgets, especially when K > 500. The reason for
that poor performance is that it tries to balance the num-
ber of records in each cell which produces very tall or wide
partitions. Those tall and wide partitions introduce a huge
distance error as the points inside each cell might be very far

0 10 20

101

102

Memory Budget (MB)

R
u
n
n
in
g
ti
m
e
(m

)
K =50

KC-RS KC-SS

KC-UH KC-NH

KC-F

0 10 20

101

102

Memory Budget (MB)

R
u
n
n
in
g
ti
m
e
(m

)

K = 100

0 10 20

101

102

Memory Budget (MB)

R
u
n
n
in
g
ti
m
e
(m

)

K = 500

0 10 20
101

102

Memory Budget (MB)

R
u
n
n
in
g
ti
m
e
(m

)

K = 1000

Figure 16: all-nodes: Running time of clustering techniques for different budgets and number of clusters.

away from the center. Furthermore, the number of records
in the cells are roughly the same in the NH and hence our
algorithm cannot utilize these frequencies to influence the
cluster center, as it does with UH. Whereas, UH produces
square cells of equal size which minimizes the overall dis-
tance between the points and their corresponding cell cen-
ter.

The significance of this result is that for K ≤ 1, 000,
synopsis-based algorithms (KC-UH, KC-RS, KC-SS) can
achieve comparable or better cluster cost than the state-of-art
parallel algorithm for k-means clustering, KC-F, which uses
the full dataset. However, when K is very large, then KC-F
is an obvious choice. For smaller k, such as K ≤ 1, 000,
KC-UH has the least clustering cost, may be opted as the
best possible choice. To clarify the computation of the clus-
tering cost, it is computed for the whole dataset, when all
the records (in the big dataset) are assigned to the closest
clusters centers.

7.5.2 KC: Performance Measure
The running time is used as a performance measure of

the clustering problem. Figure 15 shows the running time
of the clustering problem for memory budgets 2.16MB and
21.6MB for a wide range of the number of clusters. For
the same number of clusters, where KC-UH, KC-RS, and
KC-SS had better or comparable clustering cost (as shown
in Figure 14) with the KC-F, they are a clear winner in
terms of running time, as shown in Figure 15. Figure 16
presents the running time of the k-means clustering for the
all-nodes dataset. We use four values of K, 50, 100, 500,
and 1000. For each one, the budget is changed from 432KB
to 21.6MB. The budget does not affect the running time of
KC-F which stays constant. For a small value of K < 100,
synopsis-based techniques outperform KC-F up to two or-
ders of magnitude. However, as K increases, synopsis-based
algorithms take more time as they need to run more iter-
ations. Eventually, when both K and B are large, KC-F
tends to provide a better running time as it parallelizes all
the stages of the algorithm while the synopsis-based meth-
ods still have a bottleneck in the k-means clustering step.
It is noteworthy that to make a fair comparison with the
KC-F, the running time of the synopsis-based algorithms is
the sum of the time taken for synopsis generation, the con-
vergence of cluster centers and assignment of all the dataset
to the closest cluster centers. Although, synopsis might be
reused in a real-world scenario, yet we are considering the
case where synopsis is not readily available.

To conclude the results of the k-means clustering, KC-
UH can give better cost, whereas the sampling-based tech-
niques can outperform KC-F for running time while pro-
viding comparable clustering cost. However, for large K
(≥ 10, 000), KC-F would outperform synopsis-based tech-
niques. Figure 10b presents guidelines for the appropriate
technique to use in a given scenario.

7.6 Performance Measures of Spatial Parti-
tioning

This section provides the experiments on the quality and
running time of the partitioning problem. First, we study
the quality of the generated partitioning using five standard
quality measures [10, 21]. Then, we show the running time
of synopsis-based spatial partitioning algorithms.

7.6.1 SP: Quality Measures
To quantify the quality of the partitions, we calculate five

quality metrics of the partitions Q1 through Q5 [10, 21].
Q1 is the sum of the area covered by all the partitions. The
lower the value of Q1 the better the index is, as it indicates
more dead space is eliminated from the partitions, which did
not have any records. Q2 is the sum of the overlapping area
among all pairs of partitions. A smaller value is preferred as
it indicates more independence between the partitions. Q3
is total margin, i.e., the sum of the width and height of all
the partitions’ MBR. The lower the value the better for the
quality as it indicates square-ish partitions. Q4 measures
utilization of the disk space. It is calculated as the ratio
between actual data of the partitions to the total capacity
of all used blocks of the file system. High Q4 value means
higher utilization of the disk space or HDFS blocks. Q5
is the standard deviation of the sizes of the partition and
measures the load balance among all the partitions. Smaller
Q5 is the indication of more balanced partitions and thus
leading to a good load balance among the machines.

Figure 17 presents various quality measures of the
datasets for all the partitioning techniques. As reported
in [21], Q2 is almost zero for all the techniques so we omit
the results due to the limited space. Apparently, there is
no clear winner that optimizes all Qs for all the datasets.
For Q1, SP-RS(R*), and SP-SS(R*) have the worst quality,
whereas, SP-UH and SP-NH have poor quality as compared
to the ones SP-UHP, and SP-NHP for smaller memory bud-
gets. However, when the memory budget is 56MB, which is
≈ 2.5% of the input dataset, all partitioning techniques (ex-
cept R* tree-based) have almost equal performance for Q1.
On the other hand, R* tree based on samples has almost half

0 20 40 60

0.22

0.24

0.26

0.28

0.3

Memory Budget (MB)

Q
1
=

T
ot
al

A
re
a

(a) Q1 for edges

0 100 200

0.15

0.2

Memory Budget (MB)

Q
3
=

T
ot
al

M
ar
gi
n

SP-RS(STR) SP-RS(R*)

SP-SS(STR) SP-SS(R*)

SP-UH SP-UHP

SP-NH SP-NHP

SP-F

(b) Q3 for all-nodes

0 20 40 60

0.61

0.62

0.63

0.64

Memory Budget (MB)

Q
4
=

U
ti
li
za
ti
on

(c) Q4 for edges

0 100 200

0

0.2

0.4

0.6

0.8

Memory Budget (MB)

Q
5
=

S
ta
n
d
ar
d
D
ev
.

(d) Q5 for all-objects

Figure 17: Quality Measures for Spatial Partitioning based on different synopses.

10−1 100 101 102

0

10

20

30

Memory Budget (MB)

R
u
n
n
in
g
ti
m
e
(s
)

(a) SP-F = 2275s for edges

101 102

0

50

100

150

Memory Budget (MB)

R
u
n
n
in
g
ti
m
e
(s
)

SP-RS(STR) SP-RS(R*)

SP-SS(STR) SP-SS(R*)

SP-UH SP-UHP

SP-NH SP-NHP

(b) SP-F = 2993s for all-nodes

Figure 18: Partitioning time for different synopses.

Q3 (margin) value as compared to all other techniques for all
the experimented memory budgets because, unlike the STR
algorithm, R*-tree has the margin optimization embedded
in its algorithm. The utilization (Q4) for all the techniques
stabilizes at the memory budget of ≈ 21MB and above. R*-
tree is able to further improve the utilization when more
points are sampled. For Q5, SP-UH is performing the worst
of all, because of the high skewness in the datasets. We
can also notice that SP-UHP improves constantly as the
budget increases and at very high budgets it becomes very
close to the best quality. Moreover, SP-F is no better than
synopsis-based algorithms for all the experiments. In gen-
eral, as the budget increases, all synopsis-based techniques
provide similar quality measures when operating with STR.
R*-tree provides a significantly different behavior in which
it balances the different quality measures. This suggests
that increasing the budget will not improve the spatial par-
titioning quality as changing the underlying algorithm does.
Thus, researchers should invest more in better partitioning
algorithm rather than improving the synopsis, at least, for
this specific problem.

In summary, we found that splitting the cells for the
histogram-based approaches leads to higher quality. More-
over, increasing the budget improves the quality only to some
limit but improving the partitioning algorithm has a higher
potential in improving the quality. Moreover, SP-F is not
performing any better than synopsis-based algorithms. This
suggests that future researchers should focus on developing
new partitioning techniques.

7.6.2 SP: Performance Measures
The algorithm running time to generate the partition

MBRs is used as a performance measure for the partitioning
problem. Figure 18 shows the running time of the spatial
partitioning problem. Histogram-based partitioning tech-
niques have the least running time, as these only require
two passes over the histogram. Whereas, STR based on the
samples has to sort the data twice (first by x, then y). R*
-tree based on the samples has lesser running time than STR
for B < 50MB. R* -tree is more affected by the larger mem-
ory budgets (> 50MB) because it applies certain heuristics,
which takes more time for a bigger sample.

We conclude that there is no clear winner that optimizes
all the quality attributes. But, our experiments can provide
guidance, when a certain quality attribute is more desirable.
SP-F has almost similar results for all the Qs, when com-
pared against synopsis-based methods, whereas it takes sig-
nificantly more time. Thus, SP-F might not be a good choice
for any given scenario. Finally, Figure 10c presents guide-
lines when to use which spatial partitioning technique.

8. CONCLUSIONS AND FUTURE WORK
In this paper, we present an experimental evaluation of

synopsis-based data analysis techniques. For each synopsis,
we execute a state-of-the-art algorithm that operates on the
synopsis to answer each of the three data analysis problems
we consider: selectivity estimation, k-means clustering, and
spatial data partitioning. We compare against solving the
problems using the full dataset and evaluated the results
using well-accepted quality and performance measures. To
provide an experimental study, we also filled the gaps by
adapting algorithms, where needed. For K-means cluster-
ing, we show how K-means++ is applied efficiently on a
histogram rather than points.For spatial data partitioning,
we show how to extend the existing STR bulk loading al-
gorithm to work with histograms in addition to the sample.
While there is no clear winner among the synopsis methods,
we provide guidelines to help researchers and practitioners
in choosing between those methods. We believe that this
paper will open new research directions in extending other
problems to work with the various data synopsis.

9. ACKNOWLEDGMENTS
This work is supported in part by the National Science

Foundation (NSF) under grants IIS-1838222, IIS-1619463,
and IIS-1447826.

10. REFERENCES
[1] A. Aboulnaga and S. Chaudhuri. Self-tuning

histograms: Building histograms without looking at
data. ACM SIGMOD Record, 28(2):181–192, 1999.

[2] A. Aboulnaga and J. F. Naughton. Accurate
estimation of the cost of spatial selections. In Data
Engineering, 2000. Proceedings. 16th International
Conference on, pages 123–134. IEEE, 2000.

[3] I. Absalyamov, M. J. Carey, and V. J. Tsotras.
Lightweight cardinality estimation in lsm-based
systems. In Proceedings of the 2018 International
Conference on Management of Data, SIGMOD ’18,
pages 841–855, New York, NY, USA, 2018. ACM.

[4] S. Acharya, V. Poosala, and S. Ramaswamy.
Selectivity estimation in spatial databases. In
Proceedings of the 1999 ACM SIGMOD International
Conference on Management of Data, SIGMOD ’99,
pages 13–24, New York, NY, USA, 1999. ACM.

[5] S. Agarwal, B. Mozafari, A. Panda, H. Milner,
S. Madden, and I. Stoica. Blinkdb: queries with
bounded errors and bounded response times on very
large data. In Proceedings of the 8th ACM European
Conference on Computer Systems, pages 29–42. ACM,
2013.

[6] A. M. Aly, A. R. Mahmood, M. S. Hassan, W. G.
Aref, M. Ouzzani, H. Elmeleegy, and T. Qadah. Aqwa:
adaptive query workload aware partitioning of big
spatial data. PVLDB, 8(13):2062–2073, 2015.

[7] W. G. Aref and H. Samet. Optimization for spatial
query processing. In Proceedings of the 17th
International Conference on Very Large Data Bases,
pages 81–90. Morgan Kaufmann Publishers Inc., 1991.

[8] D. Arthur and S. Vassilvitskii. k-means++: The
advantages of careful seeding. In Proceedings of the
eighteenth annual ACM-SIAM symposium on Discrete
algorithms, pages 1027–1035. Society for Industrial
and Applied Mathematics, 2007.

[9] B. Bahmani, B. Moseley, A. Vattani, R. Kumar, and
S. Vassilvitskii. Scalable k-means++. PVLDB,
5(7):622–633, 2012.

[10] N. Beckmann, H.-P. Kriegel, R. Schneider, and
B. Seeger. The r*-tree: an efficient and robust access
method for points and rectangles. In ACM Sigmod
Record, volume 19, pages 322–331. Acm, 1990.

[11] J. L. Bentley. Multidimensional binary search trees
used for associative searching. Communications of the
ACM, 18(9):509–517, 1975.

[12] N. Bruno, S. Chaudhuri, and L. Gravano. Stholes: a
multidimensional workload-aware histogram. In Acm
Sigmod Record, volume 30, pages 211–222. ACM, 2001.

[13] H. Chasparis and A. Eldawy. Experimental evaluation
of selectivity estimation on big spatial data. In
Proceedings of the Fourth International ACM
Workshop on Managing and Mining Enriched
Geo-Spatial Data, page 8. ACM, 2017.

[14] Y.-J. Choi and C.-W. Chung. Selectivity estimation
for spatio-temporal queries to moving objects. In
Proceedings of the 2002 ACM SIGMOD international
conference on Management of data, pages 440–451.
ACM, 2002.

[15] E. Cohen, G. Cormode, and N. Duffield.
Structure-aware sampling on data streams. In

Proceedings of ACM SIGMETRICS, pages 197–208.
ACM, 2011.

[16] M. . Company. The age of analytics: Competing in a
data-driven world — mckinsey & company.
https://www.mckinsey.com/business-
functions/mckinsey-analytics/our-insights/the-age-of-
analytics-competing-in-a-data-driven-world. (Accessed
on 04/21/2018).

[17] S. Contributors. aseldawy/spatialhadoop2 at
reindexing.
https://github.com/aseldawy/spatialhadoop2/tree/
reindexing. (Accessed on 04/25/2018).

[18] G. Cormode. Sketch techniques for approximate query
processing. Foundations and Trends in Databases.
NOW publishers, 2011.

[19] G. Cormode, M. Garofalakis, P. J. Haas, C. Jermaine,
et al. Synopses for massive data: Samples, histograms,
wavelets, sketches. Foundations and Trends® in
Databases, 4(1–3):1–294, 2011.

[20] C. Dempsey. Where is the phrase ”80% of data is
geographic” from? ˜ gis lounge.
https://www.gislounge.com/80-percent-data-is-
geographic/. (Accessed on
01/10/2018).

[21] A. Eldawy, L. Alarabi, and M. F. Mokbel. Spatial
partitioning techniques in spatialhadoop. PVLDB,
8(12):1602–1605, 2015.

[22] A. Eldawy and M. F. Mokbel. Spatialhadoop: A
mapreduce framework for spatial data. In Data
Engineering (ICDE), 2015 IEEE 31st International
Conference on, pages 1352–1363. IEEE, 2015.

[23] J. H. Faghmous and V. Kumar. Spatio-temporal data
mining for climate data: Advances, challenges, and
opportunities. In Data mining and knowledge
discovery for big data, pages 83–116. Springer, 2014.

[24] S. Gao, C. Zhang, and W.-B. Chen. A variable bin
width histogram based image clustering algorithm. In
Semantic Computing (ICSC), 2010 IEEE Fourth
International Conference on, pages 166–171. IEEE,
2010.

[25] M. Greenwald and S. Khanna. Space-efficient online
computation of quantile summaries. In Proceedings of
the 2001 ACM SIGMOD International Conference on
Management of Data, SIGMOD ’01, pages 58–66, New
York, NY, USA, 2001. ACM.

[26] S. Guha, N. Koudas, and K. Shim. Data-streams and
histograms. In Proceedings of the thirty-third annual
ACM symposium on Theory of computing, pages
471–475. ACM, 2001.

[27] S. Guha, N. Koudas, and K. Shim. Approximation
and streaming algorithms for histogram construction
problems. ACM Transactions on Database Systems
(TODS), 31(1):396–438, 2006.

[28] D. Gunopulos, G. Kollios, V. J. Tsotras, and
C. Domeniconi. Selectivity estimators for
multidimensional range queries over real attributes.
The VLDB Journal, 14(2):137–154, 2005.

[29] P. J. Haas and A. N. Swami. Sequential sampling
procedures for query size estimation, volume 21. ACM,
1992.

[30] A. Hadoop. Hadoop, 2009.

[31] J. Hershberger and S. Suri. Adaptive sampling for
geometric problems over data streams. In Proceedings
of the twenty-third ACM SIGMOD-SIGACT-SIGART
symposium on Principles of database systems, pages
252–262. ACM, 2004.

[32] C.-T. Ho, R. Agrawal, N. Megiddo, and R. Srikant.
Range queries in olap data cubes. In Proceedings of
the 1997 ACM SIGMOD International Conference on
Management of Data, SIGMOD ’97, pages 73–88, New
York, NY, USA, 1997. ACM.

[33] N. HubbleSite. Hubblesite - the telescope - hubble
essentials - quick facts.
http://hubblesite.org/the telescope/hubble essentials/
quick facts.php. (Accessed on 01/10/2018).

[34] Internetlivestats. Twitter usage statistics - internet
live stats.
http://www.internetlivestats.com/twitter-statistics/.
(Accessed on 01/10/2018).

[35] J. Jia, C. Li, X. Zhang, C. Li, M. J. Carey, et al.
Towards interactive analytics and visualization on one
billion tweets. In Proceedings of the 24th ACM
SIGSPATIAL International Conference on Advances
in Geographic Information Systems, page 85. ACM,
2016.

[36] J. Jin, N. An, and A. Sivasubramaniam. Analyzing
range queries on spatial data. In icde, page 525. IEEE,
2000.

[37] M. Khoso. How much data is produced every day? -
level blog.
http://www.northeastern.edu/levelblog/2016/05/13/
how-much-data-produced-every-day/. (Accessed on
01/10/2018).

[38] S. T. Leutenegger, M. A. Lopez, and J. Edgington.
Str: A simple and efficient algorithm for r-tree
packing. In Data Engineering, 1997. Proceedings. 13th
international conference on, pages 497–506. IEEE,
1997.

[39] R. J. Lipton, J. F. Naughton, and D. A. Schneider.
Practical selectivity estimation through adaptive
sampling, volume 19. ACM, 1990.

[40] P. Lu, G. Chen, B. C. Ooi, H. T. Vo, and S. Wu.
Scalagist: Scalable generalized search trees for
mapreduce systems [innovative systems paper].
PVLDB, 7(14):1797–1808, 2014.

[41] W. Lu, Y. Shen, S. Chen, and B. C. Ooi. Efficient
processing of k nearest neighbor joins using
mapreduce. PVLDB, 5(10):1016–1027, 2012.

[42] J. MacQueen et al. Some methods for classification
and analysis of multivariate observations. In
Proceedings of the fifth Berkeley symposium on
mathematical statistics and probability, volume 1,
pages 281–297. Oakland, CA, USA, 1967.

[43] A. Magdy, L. Alarabi, S. Al-Harthi, M. Musleh, T. M.
Ghanem, S. Ghani, and M. F. Mokbel. Taghreed: a
system for querying, analyzing, and visualizing
geotagged microblogs. In ACM SIGSPATIAL, pages
163–172. ACM, 2014.

[44] H. Markram. The blue brain project. Nature Reviews
Neuroscience, 7(2):153, 2006.

[45] Y. Matias, J. S. Vitter, and M. Wang. Wavelet-based
histograms for selectivity estimation. In ACM

SIGMoD Record, volume 27, pages 448–459. ACM,
1998.

[46] F. Olken and D. Rotem. Sampling from spatial
databases. Statistics and Computing, 5(1):43–57, 1995.

[47] Y. Park, M. J. Cafarella, and B. Mozafari.
Visualization-aware sampling for very large databases.
In 32nd IEEE International Conference on Data
Engineering, ICDE 2016, Helsinki, Finland, May
16-20, 2016, pages 755–766, 2016.

[48] V. Poosala and Y. E. Ioannidis. Selectivity estimation
without the attribute value independence assumption.
In VLDB, volume 97, pages 486–495, 1997.

[49] J. Sankaranarayanan, H. Samet, B. E. Teitler, M. D.
Lieberman, and J. Sperling. Twitterstand: news in
tweets. In Proceedings of the 17th acm sigspatial
international conference on advances in geographic
information systems, pages 42–51. ACM, 2009.

[50] A. B. Siddique and A. Eldawy. Experimental
evaluation of sketching techniques for big spatial data.
In Proceedings of the ACM Symposium on Cloud
Computing, SoCC ’18, pages 522–522, New York, NY,
USA, 2018. ACM.

[51] F. Tauheed, L. Biveinis, T. Heinis, F. Schürmann,
H. Markram, and A. Ailamaki. Accelerating range
queries for brain simulations. In ICDE, pages 941–952,
2012.

[52] M. Vassilakopoulos and Y. Manolopoulos. On
sampling regional data. Data & knowledge
engineering, 22(3):309–318, 1997.

[53] J. S. Vitter, M. Wang, and B. Iyer. Data cube
approximation and histograms via wavelets. In
Proceedings of the International Conference on
Information and Knowledge Management, pages
96–104. ACM, 1998.

[54] H. Vo, A. Aji, and F. Wang. Sato: A spatial data
partitioning framework for scalable query processing.
In Proceedings of the 22nd ACM SIGSPATIAL
International Conference on Advances in Geographic
Information Systems, pages 545–548. ACM, 2014.

[55] J.-F. Wang, A. Stein, B.-B. Gao, and Y. Ge. A review
of spatial sampling. Spatial Statistics, 2:1–14, 2012.

[56] X. Wang, Y. Zhang, W. Zhang, X. Lin, and W. Wang.
Selectivity estimation on streaming spatio-textual data
using local correlations. PVLDB, 8(2):101–112, 2014.

[57] D. Xie, F. Li, B. Yao, G. Li, L. Zhou, and M. Guo.
Simba: Efficient in-memory spatial analytics. In
Proceedings of the 2016 International Conference on
Management of Data, pages 1071–1085. ACM, 2016.

[58] J. Yu, M.-S. Yang, and E. S. Lee. Sample-weighted
clustering methods. Computers & Mathematics with
Applications, 62(5):2200–2208, 2011.

[59] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma,
M. McCauley, M. J. Franklin, S. Shenker, and
I. Stoica. Resilient distributed datasets: A
fault-tolerant abstraction for in-memory cluster
computing. In USENIX conference on Networked
Systems Design and Implementation, pages 2–2.
USENIX Association, 2012.

[60] M. Zaharia, M. Chowdhury, M. J. Franklin,
S. Shenker, and I. Stoica. Spark: Cluster computing
with working sets. HotCloud, 10(10-10):95, 2010.

